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Roper Resonances as Vibrating Flux Tubes
between Quarks
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The Roper resonances of the nucleon are described as transverse vibrations of a
stretched flux tube between the three quarks. The proton is modeled using current
mass quarks interacting with a confining linear flux tube potential plus the spin-
dependent parts of a one-gluon exchange potential. The proton ground state has
no vibrations and the confining flux tube has the minimum length required to
connect the three quarks. The flux tube has a V or Y shape of two or three
segments, depending on the locations of the quarks. The vibrations of the flux
tube have nodes at the quarks and at the apex of the Y-shaped configuration and
provide the vibrational excitation energy to describe the proton excitations. The
amplitude of the transverse vibrations is found from a geometric analysis, and
depends on the string constant of the flux tube potential. The Roper 1.440-GeV
resonance energy is very nearly reproduced by the vibration with mode number
1 acting in only one segment of the flux tube. The vibration with mode number
2 in one segment of the flux tube closely reproduces the second proton excitation
at 1.710 GeV. The D excited states are also well reproduced by these modes of
a vibrating flux tube.

1. INTRODUCTION

The Roper resonance is an excited state of the proton that has an energy
of about 1.440 GeV and the same quantum numbers as the (1/2+) proton, of
rest energy 0.938 GeV. Other resonances with nucleon quantum numbers at
higher energies have been identified [1] in phase shift analyses. The Roper
resonance does not show up as a clear resonance in p nucleon scattering
analyses, but only through the inelasticity of the P11 phase shift. The particle
data group [1] shows its width as about 350 MeV. It is lower in energy than
the 1.530–1.675 GeV negative-parity resonances. Attempts to describe the
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Roper resonance as a breathing mode or radial motion excitation of three
quarks have not been particularly successful. Nonrelativistic harmonic oscilla-
tor models, constituent quark models [2–6], collective models, and current
quark models [7–9] of the proton have all had varying partial successes in
predicting the Roper resonance properties. The resonance has also been
studied as a monopole excitation in the solution of the Nambu–Jona-Lasino
soliton model [10] and as a possible radial node in the hyperradial wave
function of the composite three-quark wave function [8]. Rather than an
excited state of three quarks, Krehl and Speth have described the Roper as
a quasibound resonance of two pions and a nucleon [11]. Brown et al.[12]
used a three-quark model with an aharmonic collective oscillation of a confin-
ing bag surface to describe the Roper resonance.

Recent models of mesons and nucleons [2–4, 8, 13–15] use a linear
flux tube potential to confine the quarks and antiquarks in mesons and
nucleons. Isgur and Paton developed a hybrid meson model [16, 17] based
on gluonic excitations involving an excited flux tube. The production and
decay rates of such low-lying meson states have encouraging agreement with
experiment [18]. Such gluonic excitations in the nucleon are modeled here
as transverse vibrations of the flux tube connecting the quarks. This oscillation
of the confining mechanism, the flux tube, is similiar in spirit to the oscillations
of the bag surface considered by Brown et al. [12]. To confine the three
quarks in the nucleon, the flux tube potential is characterized as V 5 bS,
where b is the string constant, about 0.90 GeV/fm, and S is the length of the
flux tube connecting the three quarks. The shape of the flux tube is either a
two-segment V (1/4 of phase space) or a Y shape of three segments (3/4 of
phase space), depending on the relative location [2, 19] of the three quarks.
The quarks are at the ends of the Y-shaped flux tube, with no quark at its
vertex. For the nucleon ground state, S has the minimum length, as the flux
tube is composed of straight-line segments. S is longer than the lengths
between the quarks for the excited states due to transverse vibrations set up
in one or more segments.

The colored gluons exchanged between quarks in QCD interact with
each other. This interaction causes the flux lines to parallel one another,
rather than spread out as in QED. The interacting gluons form a flux tube
of approximately uniform cross-sectional area, so that the potential energy
becomes proportional to the flux tube length, which is tied to the distance
between the quarks. The string constant b reflects this cross-sectional area
and the energy density of the interacting exchanged gluons [13]. This potential
is assumed to be a scalar. It can be combined with the spin-dependent magnetic
part of the one-gluon exchange potential (OGEP) to explain [20] the proton–D
rest-mass differences. A similiar linear confining potential, plus attractive
OGEP terms, can explain most rest-frame properties of the proton [21].
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Current quark masses are used, with parameters adjusted to reproduce the
proton energy and rms charge radius. The magnetic moment and axial charge
are also well reproduced in this model, with 10-MeV quark masses.

The quark dynamics is assumed described by the three-body Dirac
equation solved in hypercentral approximation. The Jacobi coordinates prop-
erly handle the center of mass of the three quarks in the rest frame of the
system. The center of mass of the three quarks is maintained at the origin.
The flux tube potential is the modeled result of the exchange of many gluons,
each of zero mass. The effect their energy has on the system center of mass
is ignored. The nucleon rest energy E will be calculated using the composite
three-quark wave function found from solving the three-body Dirac equation
as an eigenvalue problem [22]:
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Hyperspherical coordinates [23–25] are used, and the three-body Dirac
equation is solved in hypercentral approximation. The hypercentral approxi-
mation limits the composite three-quark wave function to a single (1/2+)3

configuration for the proton. The basic idea is to use the chain rule of calculus
to change the partial derivatives of the kinetic energy operator with respect
to r1, etc., into partial derivatives with respect to the hyperradius. The hyper-
spherical coordinates are the hyperradius r and five hyperangles. One possible
set of these hyperangles is as follows. The three quark locations define a
triangle, with the quarks at the corners. Any two internal angles are the first
hyperangles. The triangle has a normal. The spherical polar angles defining
its direction are the next two angles. The azimuthal orientation of the triangle
about this normal is the fifth hyperangle. The hyperradius is

r 2 5 2(r 2
12 1 r 2

13 1 r 2
23)/3 5 [r 2

ij 1 r 2
k] (2)

The Jacobi coordinates in the partition (ij, k) are
›
r k 5 !3(
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x i 2

›
x j (3)

where
›

X is the center-of-mass coordinate and
›

x i are those of the particles.

2. HYPERCENTRAL APPROXIMATION VALIDITY FOR THE
FLUX TUBE POTENTIAL

If the potential is independent of the hyperangles, then the hypercentral
aproximation would be exact. V is the confining flux tube potential. The
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hyperangular dependence of the flux tube potential has been shown in Fabre
De La Ripelle and Lassant [26], so it is not reproduced here. It is remarked
there that the hypercentral approximation is a good one in a Schrödinger
equation context. The validity of the hypercentral approximation for the flux
tube potential in a relativistic three-quark context will now be probed. The
flux tube potential is independent of spin, spherically symmetric, but not
hyperspherically symmetric. The quark spins and the spin-dependent part of
the one-gluon exchange potential are temporarily neglected. The hyperspheri-
cal expansion with the flux tube potential within the three-body Klein–Gordon
equation context is considered. This is written as

[P2 1 (3m 1 V )2 2 E 2]C 5 0 (4)
›

P is the six-dimensional vector momentum conjugate to the six hyperspherical
coordinates of the system. The wave function is given by the sum over cyclic
permutations c and the harmonic values K:

C 5 o
K,c

FK(
›
r ij,

›
r k) (5)

The wave function has a definite total orbital angular momentum Ltotal, with
projection M, both of which are zero for the ground state studied here.

The hypercentral approximation for the ground state includes the K 5
Kmin component only with zero orbital angular momentum for each of the
quarks. A Kmin12 calculation is done, including additionally a component
where two units of orbital angular momentum lij and lk are assigned to the
orbital angular momentum part of the wave function, with the combination
coupled to a total angular momentum of zero. The expansion of the wave
function is over K harmonics [24, 25], now truncated at K 5 2. Each term
in the expansion can be written as

Fk 5 Uk(V)Rk(r)/r 5/2 (6)

The K harmonic functions Uk(V) are orthonormalized. Upon doing the hyper-
angular integration over the hyperangles V , the flux tube potential term can
be written as

^U0.V.U0& 5 cr, ^U2.V.U2& 5 c2r, ^U2.V. U0& 5 Dr (7)

where c 5 1.118b, c2 5 1.18b, and D 5 20.13b. The Klein–Gordon equation,
after integration over hyperangles, in Kmin12 approximation becomes

[2d 2/dr 2 1 L0(L0 1 1)/r 2 1 (3m 1 cr)2 2 E 2]R0

5 2D[6mr 1 (c 1 c2)r 2]R2 (8)
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[2d 2/dr 2 1 L2(L2 1 1)/r 2 1 (3m 1 c2r)2 2 E 2]R2

5 2D[6mr 1 (c 1 c2)r 2]R0 (9)

L0 is 3/2 for the Kmin term and L2 is 7/2 for the Kmin12 term. To get
an analytic solution, we solve these equations in perturbation theory, first
neglecting the coupling D term, and the linear 6mr terms. The solutions to
the unperturbed equations are then Gaussians. The unperturbed energies are
E 2

00 5 9m2 1 6c and E 2
20 5 9m2 1 10c2. The unperturbed radial wave func-

tions are R0 5 N0r5/2 exp(2cr 2) and R2 5 N2r9/2 exp(2c2r 2). The coupled
equations are then solved perturbatively including the coupling D terms and
the linear 6mr terms using the unperturbed wave functions. We are interested
in solutions where the quark mass m is small, but report results for masses
up to 0.3 GeV. The eigenenergy of the resulting two by two matrix is deter-
mined as is the contribution to the norm of the Kmin12 terms. Neglecting spin,
the three-quark model of the nucleon should be compared to the average of
the proton and delta masses, 1.085 GeV. The flux tube potential constant is
set to 0.9 GeV/fermi in agreement with meson studies. The hypercentral
energy E00 is 1.057 GeV for massless quarks. The contribution to the norm
for the Kmin12 terms is 0.031 for massless quarks. The eigenenergy of the
coupled equations is 1.043 GeV for massless quarks. As the assumed quark

Fig. 1. Ground state eigenenergy of the three-body Klein–Gordon equation in Kmin12 approxi-
mation using the flux tube potential. The upper curve is the hypercentral approximation eigenen-
ergy. The lower curve is the more accurate Kmin12 eigenenergy. The energy difference is about
15 MeV.
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mass increases, the predicted energies increase, as can be seen in Fig 1. The
shift of energy (a decrease) from including the Kmin12 term is about 14–20
MeV, depending on the quark mass assumed. The contribution to the norm
of the Kmin12 state is about 3–5% as shown in Fig 2. When quark masses
of about 12 MeV are used, the Kmin12 eigenenergy matches the expected
1.085 GeV. This Klein–Gordon approach using small-mass quarks provides
reasonable eigenenergies for the spinless nucleon, and shows that the hyper-
central approximation for the linear flux tube potential is rather good in this
calculation neglecting spins. This ends the discussion of the Klein–Gordon
equation in Kmin12 approximation and the neglect of spin. We return to the
hypercentral approximation.

3. FLUX TUBE VIBRATIONS

Including spin for the quarks, the composite three-quark wave function
is labeled by the J and parity quantum numbers of the upper component of
the orbitals occupied by the three quarks. The quarks are assumed to be in
a (1/2+)3 configuration coupled to a total spin of 1/2 for the proton and a
spin of 3/2 for the D. The space, spin, color, and flavor dependences of the
three-quark wave function for the proton and for all excited states considered
here are the same as in ref. 8. There is a totally antisymmetric color wave

Fig. 2. The Kmin12 component contribution to the norm of the ground-state wave function
versus quark mass. Quark masses of about 15 MeV are realistic in this modeling.
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function. The flavor, orbital angular momentum, and spin combined parts of
the wave function are totally symmetric. The configuration labels are the
total angular momentum and parity of the upper component of each quark
wave function. The upper components have no orbital angular momentum
for the configuration considered. The lower components have one unit of
orbital angular momentum, which couples to the spin of one-half, to form
the total angular momentum of one-half for each quark. With small quark
masses assumed, the lower components are not small, as they contribute
more than 0.4 to the normalization [18].

After color and hyperangular integration, the three-body Dirac equation
reduces to a set of eight coupled first-order differential equations to solve
for the eight components of the composite three-quark wave function [27,
28]. With equal-mass quarks and for a configuration where all quarks have
the same set of spatial quantum numbers, symmetries reduce the problem
to four coupled first-order differential equations involving four unknown
components of the composite three-quark wave function. These equations
can be solved as an eigenvalue problem using a power series solution [19],
where recursive relations are developed for the power series coefficients.

In the nucleon ground state, the flux tube model consists of straight-
line segments of minimum total length connecting the three quarks. The flux
tube potential is proportional to this length. Any quantum mechanical zero-
point energy of vibrations about these segments or of motion of the apex
connecting the segments is incorporated into the energy associated with the
flux tube length, V 5 bS. The excitations of this system are described as
transverse vibrations of the flux tube segments between the quarks in the
nucleon. These vibrations are now described.

Consider a distance ri from the origin to one of the quarks. Placing one
node at the origin and a quark along the x axis, and the transverse vibration
in the xy plane, we have that the vibration is characterized by the standing
wave form

y 5 Asin[npx/ri] (10)

This waveform is the shape of the vibrating flux tube at the time of maximum
displacement from the equilibrium straight-line segment position when the
flux tube is momentarily at rest during the vibration cycle. The amplitude A
of such a vibrational mode can be determined by invoking the string potential
constant b and requiring that the potential be proportional to the flux tube
segment length L. The segment length L is

L 5 #
ri

0

[1 1 (dy/dx)2]1/2 dx (11)
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Using the waveform, this becomes

L 5 #
ri

0

[1 1 (npA/ri)2 cos2(npx/ri)]1/2 dx (12)

When the amplitude A is small compared to the quark distance from the
origin, ri , the segment length is

L 5 #
ri

0

[1 1 0.5(npA/ri)2 cos2(npx/ri)] dx 5 ri 1 (npA)2/(4ri) (13)

The contribution to the potential of the vibrating segment is

Vseg 5 bri 1 b(npA)2/4ri (14)

The last term is the extra energy associated with the flux tube transverse
vibration. As the gluons are massless, the deBroglie wavelength determined
from p 5 h/l implies a vibrational energy of

Evib 5 hc/l (15)

The vibrations are restricted to having nodes at the quark locations, and also
at the Y vertex, if that is the shape of the flux tube. This restricts the
wavelength to

l 5 2ri /n (16)

and so the extra energy of the vibrating flux tube is

Evib 5 np"c/ri (17)

where n is the mode number (integer). For the vibrational mode of fewest
nodes, n is one. Comparing coefficients to the energy of a vibrating string,
the flux tube vibration amplitude is given by

A2 5 4"c/bnp (18)

This amplitude is independent of ri for large ri and is taken as independent
of ri for all separations ri. Then the flux tube length of a vibrating segment
can be expressed in terms of the mode number n and the string constant b as

L(n, ri) 5 #
ri

0

[1 1 (4"cnp/br 2
i ) cos2(npx/ri)]1/2 dx (19)
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The flux tube length L from equation (12) as a function of ri is shown
in Fig. 3 for mode numbers 1 and 2. The flux tube segment is vibrating about
its equilibrium position of minimum length. L is the segment length when
the vibrating flux tube is momentarily at rest, as it is briefly during each
vibration cycle. For a mode number of zero, the flux tube segment length L
is equal to ri. The extra energy associated with a vibrating flux tube segment
in modes 1 and 2 in this sinusoidal wave form model is very similiar to the
hybrid gap energy determined quantum mechanically by treating the flux
tube as a chain of massive beads [29].

To insure the wave function has the proper symmetry upon exchange
of any pair of quarks, the vibrating flux tube potential is written as the cyclic
sum over the three permutations of the Jacobi variables as

V(n1, n2) 5 (b/3) o
c

(L(n1, ri) 1 L(n2, rj) 1 rk) (20)

This treatment for the flux tube length fixes the apex of the flux tube
to be at the origin, rather than at the location where the flux tube length is
the minimum distance connecting the three quarks. To the extent that this
length can be characterized as a quadratic (see Fig. 3) the vibrating flux tube
length of the symmetrized potential can be written as

Fig. 3. Flux tube segment length L for a transverse vibrating mode versus r. This is the vibrating
flux tube length at the instant when it is momentarily at rest during each cycle when it is
vibrating. The flux tube potential is assumed proportional to this length. The lower curve is
for mode number 1, the upper curve is for mode number 2.
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Ls 5 [(Ar 2
1 1 Br1 1 C ) 1 (Ar 2

2 1 Br2 1 C )

1 (Ar 2
3 1 Br3 1 C )]/3 (21)

where the coefficients A, B, and C depend on the mode numbers of the
vibration. Now the constant and the quadratic terms in this vibrating flux tube
length are both independent of hyperangle. The hypercentral approximation is
exact for these terms. The linear terms containing B as a factor are also well
approximated by the hypercentral approximation, just as the linear flux tube
potential has been shown to be. Thus the hypercentral approximation for this
vibrating flux tube potential is as valid as for the linear straight-line-segment
flux tube potential.

The three body Dirac equation is solved numerically with this vibrational
excitation potential included in addition to the magnetic part of the one-gluon
exchange potential used to reproduce the proton and D energy separation.
The eigenenergies, and their comparison to experiment [1] are shown in Table
I for various modes assumed for the vibrations of the flux tube.

The string potential constant, the quark mass (10 MeV), and the magnetic
part of the one-gluon exchange potential are able to reproduce the proton
and the D ground-state rest energies, with the flux tube potential at its
minimum length. The excited states come from transverse vibrations of the
flux tube about its minimum length location in this model.

The eigenenergy for the Roper resonance is found to be 1.430 GeV, in
very good agreement with the experimental value 1.440 GeV [1]. Good
agreement with experiment is also found the first and second excited states
of the spin-1/2 and spin-3/2 nucleons. The third excited state at 2.10 GeV
is well reproduced in the proton. The corresponding 2.27-GeV state predicted
for the D is not seen in the phase shift analyses.

4. SUMMARY

The proton is modeled as three quarks of small current quark mass
interacting with a scalar linear confining potential with an additional OGEP

Table I. Hypercentral Eigenenergies

J 5 1/2 J 5 3/2Mode numbers
n1, n2 Calc. Exp. Calc. Exp.

0, 0 0.938 0.938 1.232 1.232
1, 0 1.430 1.440 1.610 1.600
2, 0 1.757 1.710 1.916 1.920
1, 1 2.103 2.100 2.270 Not seen
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spin-dependent term. The three-body Dirac equation is solved in hypercentral
approximation which restricts the wave function to a single configuration,
chosen to be the (1/2+)3. A transverse vibrational model of the confining flux
tube is used to describe the excited states of the nucleon with the same
quantum numbers as the ground state. For a given quark separation, the flux
tube has more energy when it is vibrating about its minimum length location
between the quarks than when the flux tube is motionless at its minimum
length. The endpoints of the flux tube vibrations are the quarks, or the vertex
of the Y-shaped flux tube. These are assumed to be nodes of the flux tube
vibrations. The amplitude of a vibration is determined from geometrical
considerations and is inversely related to the flux tube string constant. The
lowest vibrational mode numbers, 0 (no vibration), 1, and 2, predict eigenener-
gies that correspond to the lowest observed states of the proton with energies
0.938, 1.430, and 1.746 GeV, respectively. This agrees well with the experi-
mental values of 0.938, 1.440, and 1.710 GeV. When the mode number 1
vibration is simultaneously in two segments of the flux tube, the system
energy is predicted to be 2.086 GeV. This is in close agreement with the
resonance seen at 2.100 GeV. The energy of observed excited states of the
D are also well reproduced in this vibrating flux tube model.
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